Uncertainties in field-line tracing in the magnetosphere. Part I: the axisymmetric part of the internal geomagnetic field
نویسندگان
چکیده
The technique of tracing along magnetic field lines is widely used in magnetospheric physics to provide a ‘‘magnetic frame of reference’’ that facilitates both the planning of experiments and the interpretation of observations. The precision of any such magnetic frame of reference depends critically on the accurate representation of the various sources of magnetic field in the magnetosphere. In order to consider this important problem systematically, a study is initiated to estimate first the uncertainties in magnetic-field-line tracing in the magnetosphere that arise solely from the published (standard) errors in the specification of the geomagnetic field of internal origin. Because of the complexity in computing these uncertainties for the complete geomagnetic field of internal origin, attention is focused in this preliminary paper on the uncertainties in magnetic-fieldline tracing that result from the standard errors in just the axisymmetric part of the internal geomagnetic field. An exact analytic equation exists for the magnetic field lines of an arbitrary linear combination of axisymmetric multipoles. This equation is used to derive numerical estimates of the uncertainties in magnetic-field-line tracing that are due to the published standard errors in the axisymmetric spherical harmonic coefficients (i.e. g 0 n dg 0 n ). Numerical results determined from the analytic equation are compared with computational results based on stepwise numerical integration along magnetic field lines. Excellent agreement is obtained between the analytical and computational methods in the axisymmetric case, which provides great confidence in the accuracy of the computer program used for stepwise numerical integration along magnetic field lines. This computer program is then used in the following paper to estimate the uncertainties in magnetic-field-line tracing in the magnetosphere that arise from the published standard errors in the full set of spherical harmonic coefficients, which define the complete (non-axisymmetric) geomagnetic field of internal origin. Numerical estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, calculated here for the axisymmetric part of the internal geomagnetic field, should be regarded as ‘‘first approximations’’ in the sense that such estimates are only as accurate as the published standard errors in the set of axisymmetric spherical harmonic coefficients. However, all procedures developed in this preliminary paper can be applied to the derivation of more realistic estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, following further progress in the determination of more accurate standard errors in the spherical harmonic coefficients.
منابع مشابه
Uncertainties in field-line tracing in the magnetosphere. Part II: the complete internal geomagnetic field
The discussion in the preceding paper is restricted to the uncertainties in magnetic-field-line tracing in the magnetosphere resulting from published standard errors in the spherical harmonic coefficients that define the axisymmetric part of the internal geomagnetic field (i.e. gn dg 0 n). Numerical estimates of these uncertainties based on an analytic equation for axisymmetric field lines are ...
متن کاملMHD simulations of quadrupolar paleomagnetospheres
[1] During geomagnetic polarity transitions the Earth’s internal magnetic field is expected to deviate significantly from the dipolar configuration observed today, and higher-order multipoles can become important. Their effects on the magnetosphere are investigated in this study by means of MHD simulations. We look at quadrupolar configurations and vary the parameters that are expected to be mo...
متن کاملA study of magnetic drift motion of particles around the equatorial plasmapause by using the cluster observation
On August 7, 2003 the Cluster spacecraft moved through the dayside magnetosphere. The energetic particle spectrometer on board Cluster provided measurements of an extensive range of energy. Besides, satellite measurements of geomagnetic field showed a gradient magnetic field. It is known that an inhomogeneity of the magnetic field leads to a drift of charged particles. In this paper, the drift ...
متن کاملCosmic ray cutoff prediction using magnetic field from global magnetosphere MHD simulations
Relativistic particles entering the Earth’s magnetosphere, i.e. cosmic rays and solar energetic particles, are of prime space weather interest because they can affect satellite operations, communications, and the safety of astronauts and airline crews and passengers. In order to mitigate the hazards that originate from such particles one needs to predict the cutoff latitudes of such particles a...
متن کاملModeling ionospheric outflows and their impact on the magnetosphere, initial results
[1] Ionospheric outflow has been shown to be a significant contributor to the plasma population of the magnetosphere during active geomagnetic conditions. We present the results of new efforts to model the source and effects of out-flowing plasma in the Space Weather Modeling Framework (SWMF). In particular, we develop and use the Polar Wind Outflow Model (PWOM), a field-aligned, multifluid, mu...
متن کامل